STEREOCHEMISTRY OF ISOKHELLACTONE DERIVED COUMARINS FROM PEUCEDANUM ARENARIUM*

ANNA B. ZHELEVA, MADAN M. MAHANDRU and LILIA BUBEVA-IVANOVA Chemical Pharmaceutical Research Institute, Sofia-56, Bulgaria; Department of Chemistry University of Sheffield, Sheffield S3 7HF, England

(Received 3 November 1975)

Key Word Index—Peucedanum arenarium var. arenarium; Umbelliferae; stereochemistry; natural coumarins; xanthalin, peuarenarine, peuarenine, isokhellactone.

Abstract—Previously xanthalin and two new pyranocoumarins, peuarenarine and peuarenine, had yielded on alkaline hydrolysis cis-isokhellactone (cis-3',4'-dihydroxy-3',4'-dihydroxyanthyletin). The configuration of these products has been now established as 3'(R),4'(R). Additionally, cis- and trans-methylisokhellactones, cis-isokhellactone diacetate and cis-isokhellactone dibenzoate have been obtained.

\`\.

INTRODUCTION

In earlier communications [1-3] the presence of xanthalin (1) and two new pyranocoumarins peuarenarine (2) and peuarenine (3) was reported. Cis-configuration was established [3] for the above compounds as well as for the parent glycol, isokhellactone (4). The stereochemistry and absolute configuration of these, and related products, are now discussed.

RESULTS AND DISCUSSION

Treatment of the natural diesters (1-3) in dioxane with aqueous potassium hydroxide led to the cis-diol (4) mp 217–219° [2]. After several recrystallizations of this product from methanol the mp rose to 227–229°, $[\alpha]_D^{25}$ –21.5° (c 0.22, pyridine), $[\alpha]_D^{25}$ +38.6° (c 0.14, EtOH), $[\alpha]_D^{25}$ +47.7° (c 0.22, MeOH). Sano et al. [4] have recently prepared the (-)-cis-diol, mp 226-228° [α]_D -43.8° (MeOH) and the (+)-trans-diol, mp 229-231° $[\alpha]_D$ +144.2° from the coumarin decursin. The new (+)-cis-diol (4) obtained from the natural coumarins of Peucedanum arenarium is therefore the third component of the four possible isomers. The absolute configuration of the (-)-cis-diol has been determined [4] as 3'(S), 4'(S) and that of the (+)-trans-diol as 3'(S), 4'(R). Therefore the (+)-cis-diol (4) prepared by alkaline hydrolysis of the coumarins (1-3) should be 3'(R), 4'(R). The proposed absolute configuration was confirmed by its hydrogenation over Adam's catalyst to give 3,4-dihydrodecursinol (5) $C_{14}H_{10}O_4$, mp 141–142°, $[\alpha]_D$ -25.2° (MeOH) whereas Sano et al. [4] have reported mp. 140-142° and $[\alpha]_D + 29.7^\circ$ (MeOH) for the corresponding enantiomer. The cis-products in this series of linear pyranocou-

marins have been encountered not only among natural

products, but they have also been synthesized after acetylation and benzoylation of the (+)-cis-diol to its cis-diacetate (6) and cis-dibenzoate (7).

The only trans product prepared in this series has been trans-methylisokhellactone (8). Treatment of the natural coumarins with methanolic potassium hydroxide at room temperature or under reflux led to a mixture of the cis- and trans-products (8 and 9) in a ratio of approx.

- -OCOC(Me) = CHMe

 A

 -OCOC CHMe
- (I) xontholin, R₁= R₂= A
- (2) peuarenarine, R₁=A,R₂=B
- (3) peuarenine, R₁=R₂=B
- (4) isokheliactone, R₁=R₂=OH
- (6) isokhellactonediacetate, R,=R,=OCOMe
- (7) Isokhellactonedibenzoate, R. R. OCOC, H.
- (9) cis-methylisokhellactone, R₁=OH, R₂=OMe
- (IO) cis-3'-acetyl-4'-methylisokhellactone

 R_I=OCOMe, R₂=OMe

(8) trans-methylisokheliactone

R_i=OH, R₂=OMe

(II) <u>trans</u> -3'- acetyl - 4'-methylisokhellactone R_i- OCOMe, R₂- OMe

(5) 3,4-dihydrodecursinol

^{*} Unless otherwise stated UV spectra were measured in EtOH IR in CHCl₃ and NMR in CDCl₃ at 100 MH₃.

Part 9 in the series "Natural Coumarins". For part 8 see Zheleva A. B., Mahandru M. M. and Bubeva-Ivanova L. (1976), Phytochemistry 15, 209.

1:1, mp 136-138°. The isomers were separated by PLC to give (-)-trans- and (+)-cis-methylisokhellactones (8 and 9). The new products now make available all the four possible optical isomers, since (-)-cis- and (+)-trans-methylisokhellactones have been reported by Hata et al. [5]. Acetyl derivatives of the (-)-trans- and (+)-cis-methylisokhellactones were also prepared and saponification of these acetates with potassium hydroxide in acetone regenerated the starting methylisokhellactones.

EXPERIMENTAL

Isokhellactone (4). A mixture of 1, 2 and 3 (3 g) in dioxane (30 ml) was treated with 10% KOH (200 ml) for 2 hr under reflux. After cooling the soln was acidified with 10% H₂SO₄, diluted (600 ml H₂O) and extracted with EtOAc. The extract was dried and concentrated to give 4, mp 227-229°, lit. 217-219° [3].

Isokhellactonediacetate (6). Acetylation of 4 with $C_5H_5N-AC_2O$ gave 6, mp 147–147.5°, $[\alpha]_2^{15}$ –58.8° (c 0.16, CHCl₃). (Found: C, 62.25; H, 5.01, M⁺ 346, $C_{18}H_{18}O_7$ requires: C,62.42; H,5.20%). UV λ_{max}^{EiOH} nm (log ε) 220 (4.05), 246(3.28), 257(3.36), 300sh(400), 324(4.22). IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 1735, 1630, 1565, 1492, 1390, 1375, 1320, 1300. NMR: δ 7.57 (1H, d, J = 10 Hz, H – 4), 6.23 (1H, d, J = 10 Hz, H – 3), 7.28 (1H, s, H – 5), 6.78 (1H, s, H – 8), 6.18 (1H, d, J = 4 Hz, H – 4'), 5.33 (1H, d, J = 4 Hz, H – 3'), 1.43 (6H, s, > C(Me)), 2.05 (3H, s, OCO Me), 2.13 (3H, s, OCOMe).

Isokhellactonedibenzoate (7). Benzoylation of 4 with benzoylchloride- $C_6H_6-C_5H_5N$ gave 7, mp 89–90°, $\lceil\alpha\rceil_0^{25}+0.13^\circ$ (c 0.08, CHCl₃). (Found: C,71.25; H, 5.01, M⁺ 470, $C_{28}H_{22}O_7$ requires C, 71.48; H, 4.68%). UV λ_{max}^{EiOH} nm (log e): 220 (4.10), 246 (3.35), 257 (3.50), 300sh (4.20), 324 (4.30). IR ν_{max}^{CHCl3} cm⁻¹: 1715–1740, 1630, 1602, 1586, 1565, 1492, 1466, 1451, 1390, 1372. NMR: δ 7.89 (1H, d, J = 10 Hz, H - 4), 6.21 (1H, d, J = 10 Hz, H - 3), 6.88 (1H, s, H - 8), 6.58 (1H, d, J = 4 Hz, H - 4'), 5.71 (1H, d, J = 4 Hz, H - 3'), 1.56 (6H, s, >C(CH₃)₂), 7.20–7.90 (11H, brd m, H - 5 and 2 C_6H_5 COO).

Methylisokhellactones, cis (9) and trans (8). The coumarin diesters (1-3) dissolved in MeOH(50 ml) were heated under reflux with 10% aq KOH (200 ml, 2 hr). The reaction mixture was cooled, acidified (10% H₂SO₄), diluted with H₂O (600 ml) and extracted with EtOAc. The extract was dried and conc to give a mixture of 4, 8 and 9. Column chromatography on neutral alumina gave a mixture of 8 and 9 and pure 4. After PLC of the above mixture in CHCl₃-Me₂CO (9:1), pure

8 and 9 were isolated. Cis-methylisokhellactone (9), mp 104–105°, $[\alpha]_D^{25}$ +57.2° (c 0.18, MeOH) (lit [5] mp 71.5°, $[\alpha]_D$ -52.9 (MeOH) for the enantiomer). (Found: C, 65.10; H, 5.65; M⁺ 276, $C_{15}H_{16}O_5$ requires C, 65.21; H, 5.79%.) UV $\lambda_{\text{max}}^{\text{EiOH}}$ nm (log ϵ): 220(4.15), 247(3.45), 257(3.60), 300sh(4.24), 324 (4.38). IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3540, 3480, 1720, 1625, 1560, 1490, 1330, 1305, 1290, 1140. NMR (in C₅D₅N): δ 7.62 (1H, d, J = 10Hz, H - 4), 6.29 (1H, d, J = 10 Hz, H - 3), 7.69 (1H, s. H - 5), 6.76 (1H,s, H - 8), 4.58 (1H,d, J = 3.5 Hz, H - 4), 4.16 (1H, d, J = 3.5 Hz, H - 3'), 3.50 (3H, s, OMe), 1.68 and 1.32 (3H each, s,>C(Me)₂). Trans-methylisokhellactone (8): mp 72–74°, $[\alpha]_{6}^{25}$ –76° (c 0.55, EtOH), $[\alpha]_{6}^{25}$ –73° (c 0.24, MeOH) (lit[5] mp 94-96°, [α]_D +92.3° (MeOH) for the enantiomer). (Found: C, 65.15; H, 5.60, M* 276, $C_{15}H_{16}O_{5}$ requires C, 65.21; H, 5.79%). UV λ_{max}^{ELOH} nm (log ϵ): 220 (4.08), 247 (3.35), 257 (3.52), 300sh (4.17), 324 (4.30). IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3422, 1720, 1625, 1560, 1495, 1352, 1330, 1290, 1090. NMR (in C_5D_5N): δ 7.59 (1H, d, J = 10 Hz, H – 4), 6.25 (1H, d, J = 10 Hz, H - 3), 7.62 (1H, s, H - 5), 6.80 (1H, s, H - 8), 4.57 (1H, d, J = 7.6 Hz, H - 4'), 4,07) 1H, d, J = 7.6 Hz, H - 3'), 3.68 (3H, s, OMe), 1.59 and 1.46 (3H each, s, $> C(Me)_2$).

Cis- and trans-acetylmethylisokhellactone (10 and 11). Cismethylisokhellactone (9) was acetylated to give a small amount of a resinous residue of 10. NMR: δ 7.58 (1H, d, J = 10 Hz, H - 4), 6.19 (1H, d, J = 10 Hz, H - 3), 7.54 (1H, s, H - 5), 6.74 (1H, s, H - 8), 5.41 (1H, d, J = 4 Hz, H - 4'), 4.52 (1H, d, J = 4 Hz, H - 3'), 3.58 (3H, s, OMe), 2.04 (3H, s, OCOMe), 1.24 and 1.38 (6H, >C(Me)₂). Accordingly, 8 gave 11, mp 136–137°, $[\alpha]_D^{25}$ -44° (c 0.79, EtOH) (lit [5] mp 130–132° $[\alpha]_D$ +77.0° (EtOH) for the enantiomer). (Found: C, 64.00; H, 5.55, M⁺ 318, C₁₇H₁₈O₆ requires C, 64.15; H, 5.66%). UV λ_{max}^{EiOH} nm(log ϵ): 220 (4.05), 246 (3.26), 257 (3.30), 300sh (4.00), 324 (4.22). NMR: δ 7.59 (1H, d, d = 10 Hz, H - 4), 6.21 (1H, d, d = 10 Hz, H - 3), 7.42 (1H, s, H - 5), 6.75 (1H, s, H - 8), 5.22 (1H, d, d = 5 Hz, H - 4'), 4.30 (1H, d, d = 5 Hz, H - 3'), 3.50 (3H, s, OMe), 2.10 (3H, s, OCOMe), 1.24 (s) and 1.38 (d) (6H, s) (C(Me)₂).

REFERENCES

- Bubeva-Ivanova, L. and Zheleva, A. (1972) Shornik Trudove NIHFI, 7, 179.
- Zheleva, A., Bubeva-Ivanova, L. and Spassov S. L. (1971)
 Naturforsch. 26b, 113.
- Zheleva, A., Soine T. O. and Bubeva-Ivanova, L. (1972)
 J. Pharm. Sci. 61, 1643.
- Sano K., Yosioka, I. and Kitagawa, I. (1973) Chem. Pharm. Bull. 21, 2095.
- 5. Hata K. and Sano, K. (1969) Yakugaku Zasshi, 89, 549.